

Technologies and Nanotechnologies of Magnetic-Abrasive Machining of Surfaces

Speaker:

Dr. Mikalai Khomich, Director of POLIMAG

POLIMAG

ul. Surganova 37/1-103, 220013 Minsk, Belarus

Tel: +375 17 252 87 32

E-mail: polimag@mail.ru

www.polimag.eu

Minsk 2020

 The magnetic field transforms the ferroabrasive powder into a kind of an "elastic brush" and polishes the surface

 Pulsing magnetic field improves the structure of the preface layer of the material

Application

- Formation of surface nanorelief
- Polishing surfaces before coating
- Cleansing surfaces before welding
- Polishing surfaces to increase resistance to corrosion, wear and mechanical destruction
- Surface modification under physical-chemical processes (diffusion, adhesion, etc.)

Experimental model for polishing plate surfaces

Polishing of electronics: Si-wafers

Ra = 0.72 nm

TTV = 2.9 μm

Title: Si No.1 Note: 2nd measurement

Polishing laser crystals (CaF₂ and other)

File:

Wedge

X/YSize

Date

Time

Ra

Rms

Terms

Masks:

Filtering

Data Restore

Valid Points

Pixel size

Averages.

20 Pt. PV

2 Pt. PV

Wavelength

Contour Plot

Ra = 1.537 nm

Title: CaF2-Rand Note: Nr.3

Superfine polishing

3905 Valid layout

A09 Experimental sample

A14 Experimental sample

A17 Industrial model

Laser induced damage threshold

POLIMAG

Segmentation and the second se

@ makerson

POLIMAG – SO1176

COMPARISON OF LIDT VALUES

Figure 1: Comparison of SO1176 measurements.

Table 1: SO1176 data spreadsheet

Sample	Threshold (1-on-1)	Error lower	Error upper
MAM	21.80	1,58	1.58
Classic polishing	13,13	1.07	0,96

Page 1 of 1

Features of superfine polishing

Application:

surfaces of high-precision details of optics, lasers, micro- and nanoelectronics, etc.

Benefits:

- Very high quality
 - Roughness, Ra:

before: 8 – 10 nm after: 0.2 – 0.8 nm

- minimum defects in the structure of the surface layer
- Performance is 4-10 times higher than that of other technologies
- Cost is 3 5 times lower than cost of other technologies
- Environmental friendliness

Optical glass polishing

Interferograms of optical glass before and after MAM

Magnetic-Abrasive Polishing of plain, spherical and aspherical surfaces

Model A17

Before MAM		After MAM		
Sa	0.27 nm	Sa	0.14 nm	
Sq	0.369 nm	Sq	0.189 nm	
Sp	4.58 nm	Sp	1.13 nm	
Sv	3.66 nm	Sv	0.735 nm	

Technical characteristics

Piece diameter	10 - 200 mm
Ra of the polished surface	0.2 – 0,8 nm
Polishing time	2 - 15 min
Power consumption	1.5 kW
Size L×W×H	900 × 500 × 500 mm
Weight	80 kg

ISO 25178

MAM potential

Model A17

Before MAM		Aft	After MAM	
Sa	0.27 nm	Sa	0.14 nm	
Sq	0.369 nm	Sq	0.189 nm	
Sp	4.58 nm	Sp	1.13 nm	
Sv	3.66 nm	Sv	0.735 nm	
Sz	8.24 nm	Sz	1.87 nm	
ISO 25178				

Analogs

MRF (Q22-XE)

Q-Flex 100

Model A17

A17 in the autonomous clean zone

Polishing ceramics: plates for cutters and mills

Materials	Microhardness, GPa
Diamond	100
Borazon	88
SiC	33
AI_2O_3	20
Si	12

MAP of artificial heart valve

Valve surface nanorelief:

Sash material (locking elements): pyrolytic carbon (sitall)

Before MAM After MAM

Ra	6.13 nm	Ra	3.91 nm
Rz	49.02 nm	Rz	24.39 nm
Sa	24.11 nm	Sa	9.41 nm

MAM equipment (polishing and cleansing) produced during between 1975 – 1995

Cleansing edges before welding

Polishing shafts

Polishing screws

Cleansing plates and bands

Polishing spheres

Polishing and cleansing pipes

Cleansing wire

Magnetic abrasive polishing of fuel rods of nuclear reactors

Nuclear reactor scheme

Heat-releasing element (fuel rod)

T15 for polishing of pipes fuel rods

Fuel cell assembly

Conventional technologies (chemical etching, grinding and mechanical polishing) do not provide the required surface quality of pipes

Automated model T19 for polishing of pipes fuel rods (under construction)

Automated model T19 in production

MAP of the inner surfaces of the waveguides

Waveguide material: alloys Cu, Al and Si, steel, etc.

 Before MAP
 After MAP

 Ra = **0.8** μm
 Ra = **0.076** μm

MAP flat punch surface

Before MAP

After MAP

100х 200 мкм

Roughness Ra, µm

Maaaaa	Before MAP	After MAP		
weasurement		20 passes	30 passes	
1	2.897	0.328	0.024	
2	2.761	0.413	0.021	
3	2.555	0.382	0.029	
4	2.671	0.384	0.040	
5	2.437	0.685	0.040	
6	2.634	0.623	0.034	
7	2.666	0.449	0.026	
8	2.664	0.325	0.038	
9	2.660	0.379	0.098	
10	2.788	0.510	0.052	

100x

200 мкм

Examples of details for MAM

Optics

Ra = 0,14 nm = 1,4 À

Laser ceramics

Si-wafers for electronics

Ra = 0.72 nm

Examples of details for MAM

Tools: cutters, punch, drills

Pipes:

external and internal surfaces

Envelopes of fuel rods of nuclear reactors

Examples of details for MAM

Cleansing of surfaces of details for aviation, space, ship and other industries

Cleansing edges before welding

Polishing aviaturbine blades

Removing burrs and edges rounding

Instruments for quality control of bearing components after heat treatment

Все приборы изображены без электронных блоков управления *Приборы изображены без устройств автоматической поштучной подачи шариков

More than 170 scientific publications More than 70 patents

Partners:

POLIMAG

Russia

вниинм

имени А.А. Бочвара

Germany

TECHNOLOGIES INSTRUMENTS MATERIALS

South Korea

Italy

O

University of Ferrara

POLIMAG

ul. Surganova 37/1 - 102, 220013 Minsk, Belarus Tel: +375 17 252 87 32 E-mail: polimag@mail.ru www.polimag.eu

Belarussian National Technical University

